

Third Semester B.E. Degree Examination, July/August 2022 Mechanics of Materials

Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an expression for deformation of uniformly tapering rectangular bar.
(08 Marks)
b. A compound bar consists of a 40 mm diameter steel bar surrounded by a closely fitting cast iron tube of 4 mm wall thickness. Length of the compound bar is 1.8 m . Determine the load required to compress the compound bar so that the deformation induced in it is 1 mm . Take the values of Young's modulli as $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{CI}}=100 \mathrm{GPa}$.
(08 Marks)

OR

2 a. Derive a relationship between modulus of Dasticity (E) and Bulk modulus (K).
(08 Marks)
b. A Steel bar is sandwiched between two copper bars each having the same area and length as the steel bar, at an initial temperature of $10^{\circ} \mathrm{C}$. These are rigidly connected together at both the ends. When the temperature is raised to $260^{\circ} \mathrm{C}$, the length of the bars increases by 1.0 mm . Determine the original length and the final stresses in the bars. Take the following values:
$\mathrm{E}_{\mathrm{S}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{E}_{\mathrm{c}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
$\alpha_{s}=12 \times 10^{-6}$ per $^{\circ} \mathrm{C} ; \alpha_{c}=18 \times 10^{-6}$ per $^{\circ} \mathrm{C}$
(08 Marks)

Module-2

3 a. What are principle stresses and principle planes?
(04 Marks)
b. Show that sum of any two orthogonal components of stresses at a point in constant.
(04 Marks)
c. The state of stress in a two dimensionally stressed body is as shown Fig Q3(c). Determine the principal planes, principle stresses, maximum shear stress and their planes.

(08 Marks)
OR
4 a. Show that
i) Circumferential stress $\sigma_{\mathrm{c}}=\frac{\mathrm{pd}}{2 \mathrm{t}}$
(03 Marks)
ii) Longitudinal stress $\sigma_{\mathrm{L}}=\frac{\mathrm{pd}}{4 \mathrm{t}}$
b. A thick cylinder of external and internal diameter of 300 mm and 180 mm is subjected to an internal pressure of $42 \mathrm{~N} / \mathrm{mm}^{2}$ and external pressure $6 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the stresses in the material. Now if the external pressure is doubled, what internal pressure can be maintained without exceeding the previously determined maximum stress?
(10 Marks)

Module-3

5 Draw the SF and BM diagrams for a simply supported beam subjected to the loads as shown below Fig Q5.

Fig Q5
(16 Marks)

OR
6 a. Show that $\frac{\sigma_{b}}{y}=\frac{E}{R}$
15ME34

Module-5

9 a. Determine the internal strain energy stored within an elastic bar subjected to a torque T.
(08 Marks)
b. A simply supported beam is loaded as shown in Fig Q9(b). Determine the deflection using Castigliane theorem.

(08 Marks)

10 a. Explain :
i) Maximum principal stress theory
ii) Maximum shear stress theory
(08 Marks)
b. A bolt is subjected to an axial pull of 12 kN together with a transverse shear force of 6 kN .

Determine the diameter of bolt by using :
i) Maximum principal stress theory
ii) Maximum shear stress theory.

